Search among patches of seaweed along the shores of Africa, Australia or warmer parts of Eurasia and you may be able to find represents of the marine gastropod genus Tricolia. Tricolia are small shells, less than a centimetre in height, with shiny shells that may be smooth or spirally ribbed. Most species have a moderately high spire and an ovate shape but some are lower and more globose (Knight et al. 1960). The shell may or may not have an umbilicus, and there is a calcareous, externally convex operculum. Tricolia belongs to the Phasianellidae, commonly known as pheasant shells, presumably in reference to the bold, intricate colour patterns of many species. Species of Tricolia and the closely related genus Eulithidium, which replaces it in the Americas, have shell pigments containing porphyrin that fluoresce under ultraviolet light (Vafiadis & Burn 2020). Over forty species of Tricolia are currently recognised with the highest diversity in southern Africa (Nangammbi et al. 2016). However, the taxonomy of the genus has historically been confused due to polymorphic species being named multiple times; it is possible that at least some of the apparent African diversity is an artefact of the genus being largely unrevised in that region. An analysis of some of the southern African taxa by Nangammbi et al. (2016) found that some 'species' could not be distinguished genetically. They were, nevertheless, distinct geographically and the authors suggested that they may be variants of a single species responding to different environments.
Like other members of the Vetigastropoda (the clade containing most of what used to be called the 'archaeogastropods'), Tricolia species have a simple life cycle without an actively feeding planktonic larva. The basic mode of reproduction is by broadcast spawning with separate males and females releasing gametes into the water column. After fertilisation, a brief non-feeding planktonic phase is nourished by yolk from the egg before the larva settles. The brevity of this phase is reflected by the resultant form of the protoconch which accounts for less than an entire whorl. In the Indo-West Pacific species T. variabilis, the male is smaller than the female and sits directly on her, waiting to fertilise her eggs as they are laid as gelatinous capsules rather than freely broadcasted. A temperate Australian species, T. rosea, takes things a step further as the female broods embryos (up to nearly fifty at a time) within the cavity of the last shell whorl (Vafiadis & Burn 2020). How the eggs are actually fertilised remains unknown but all embryos within a brood are about the samesize and stage of development, indicating a single fertilisation event; perhaps males associate with females as in T. variabilis. After the young pheasant shells hatch or settle, they initially feed on diatoms and other microalgae until they eventually grow enough to move onto the seaweed fronds that will comprise their adult diet.
REFERENCES
Knight, J. B., L. R. Cox, A. M. Keen, R. L. Batten, E. L. Yochelson & R. Robertson. 1960. Gastropoda: systematic descriptions. In: R. C. Moore (ed.) Treatise on Invertebrate Paleontology pt I. Mollusca 1. Mollusca—general features, Scaphopoda, Amphineura, Monoplacophora, Gastropoda—general features, Archaeogastropoda and some (mainly Paleozoic) Caenogastropoda and Opisthobranchia pp. I171–I351. Geological Society of America: Boulder (Colorado), and University of Kansas Press: Lawrence (Kansas).
Nangammbi, T. C., D. G. Herbert & P. R. Teske. 2016. Molecular insights into species recognition within southern Africa's endemic Tricolia radiation (Vetigastropoda: Phasianellidae). Journal of Molluscan Studies 82: 97–103.
Vafiadis, P., & R. Burn. 2020. Internal embryonic brooding and development in the southern Australian micro-snail Tricolia rosea (Angas, 1867) (Vetigastropoda: Phasianellidae: Tricoliinae). Molluscan Research 40 (1): 60–76.
No comments:
Post a Comment